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Policies to Reduce Forest Fragmentation: 
Combining Econometric Models with GIS-Based Landscape 

Simulations 
 

David J. Lewis and Andrew J. Plantinga1 

 
I. Introduction 
 

Human-induced land use conversion is one of the primary determinants of 

environmental change worldwide.  A typical consequence of forestland conversions is the 

fragmentation of the original forest base.  Fragmentation occurs when an originally 

contiguous patch of forestland becomes separated into several disjunct patches.  Forest 

fragmentation has long been considered a primary threat to terrestrial biodiversity  

(Armsworth et al. 2004).  In the United States, the population decline of many species of 

birds is one example of a potential loss of biodiversity.  According to one recent estimate, 

approximately twenty percent of the bird species in the U.S. have declined significantly 

in population over recent years (National Audubon Society 2002).  While there are many 

potential causes of declines in U.S. bird populations, one primary cause is thought to be 

the fragmentation of forested habitat (Askins 2002; Faaborg 2002), particularly along the 

eastern seaboard and in the Midwest region.   

A recent GIS analysis of the fragmentation of continental U.S. forests indicates 

that most forested parcels in the lower 48 states are found in fragmented landscapes 

(Ritters et al. 2002).  Heavily fragmented landscapes have fewer interior parcels; i.e., 

forested parcels that are a certain minimum distance from the nearest edge.  Such interior 

                                                
1 Lewis is a PhD candidate and Plantinga is an assistant professor in the Department of Agricultural and 
Resource Economics at Oregon State University.  The authors acknowledge financial support from the 
USDA Forest Service�s Sustainable Wood Production Initiative. The authors also acknowledge data 
assistance from Ruben Lubowski, Vince Breneman, Shawn Buckholtz, and Ben Stuckey. All errors are the 
author�s responsibility. 
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parcels provide the best habitat for many sensitive species (Robbins et al. 1989, Robinson 

et al. 1995, Askins 2002).  For example, some species of interior-forest songbirds require 

habitat that is more than 200m from the nearest non-forest edge (Temple and Cary 1988).  

However, approximately 62% of forest in the lower 48 states is located within 150m of 

the nearest edge, which suggests that fragmentation of U.S. forests is so pervasive that 

edge effects influence ecological processes on most forested lands (Ritters et al. 2002).  

The purpose of this paper is to develop a methodology for accurately predicting 

the spatial structure of landscape change under given market conditions and policy 

scenarios.  The geography literature has devoted much attention to the use of GIS-based 

simulation techniques (notably cellular automata) in predicting landscape change (Clarke 

and Gaydos 1998; Wu 1998, 2002), but relatively little to the underlying behavioral 

factors affecting landowner decisions or the influence of market conditions.  Conversely, 

the economics literature has devoted much attention to estimating behavioral models of 

landowner decisions (e.g. Stavins and Jaffe 1990; Bockstael 1996; Cropper et al. 2001), 

but less to the application of these models to predicting the future spatial pattern of the 

landscape.  Our approach has two main components.  First, a behavioral model of land 

use conversion is estimated at the parcel level to provide land use transition probabilities 

that are a function of market-based returns and the physical characteristics of the 

landscape.  Second, we use simulations to relate the transition probabilities to actual 

landscapes so that the future spatial patterns of the landscape can be predicted.    

Our work is distinguised from the empirical literature on spatial land use in two 

ways.  First, this is the first paper designed to explicitly analyze the effect of land-use 

policies on habitat fragmentation across a large landscape.  The consequences of 

fragmentation for biodiversity loss highlights the importance of land use analyses which 
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focus on the spatial pattern of wildlife habitat.  Second, this is the first paper to utilize a 

monte carlo simulation approach in the application of econometrically-derived land use 

transition probabilities to GIS maps of actual landscapes.  Other papers (Nelson et al. 

2001; Irwin and Bockstael 2002) apply transition probabilties as deterministic rules, 

which typically involve converting parcels of land to the use with the highest 

econometrically-derived transition probability, regardless of its magnitude relative to the 

probability of other land uses2. A consequence of such a methodology is the prediction of 

a single landscape.  However, utilizing probabilities in such a way treats them as 

deterministic rules and is inconsistent with the purpose of specifying choice probabilities.  

By specifying choice probabilties, the researcher is saying that if the choice situation 

were repeated numerous times, each alternative would be chosen a certain proportion of 

the time (Train 2003 p. 73).  In this paper, we simulate multiple landscape configurations 

which satisfy the underlying probability rules but which do not assume that parcels 

always convert to the use with the highest probability.  To analyze the spatial patterns of 

the predicted landscapes we calculate fragmentation indices developed in the landscape 

ecology literature after each simulation and present a distribution of fragmentation 

outcomes. 

The focus of our analysis will be on the coastal plain of South Carolina (Figure 1).  

This region was chosen for four primary reasons.  First, approximately 83% of the 

landscape is privately-owned and can be classified as either forest, agriculture, or urban.  

Thus, our profit-maximizing land-use conversion model will be appropriate at explaining 

landscape change on the coastal plain. Second, this is a region of conservation concern. A 

                                                
2 Irwin and Bockstael (2002) apply urban development probabilities to undeveloped parcels with multiple 
rounds of development.  In each round, the parcel with the highest probability of conversion is the parcel 
chosen for conversion. 
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bird conservation plan developed by Partners in Flight identifies approximately 22% of 

the region’s bird species as a high conservation priority.  Among the primary 

conservation goals in the Partners in Flight plan (as in many other wildlife conservation 

plans), is the provision of large blocks of un-fragmented contiguous forest habitat.  Third, 

there is significant spatial heterogeneity in initial land uses across the coastal plain.  

Forestland makes up approximately 57% of this landscape and is fragmented in varying 

degrees by both agriculture (21% of the landscape) and urban (5% of the landscape) land 

uses.  Figure 1 shows the distribution of forestland and core forestland (a measure of 

fragmentation) across the coastal plain.  Such spatial heterogeneity will allow us to 

analyze the effects of initial landscape conditions on predictions of fragmentation in both 

urban and rural areas. Lastly, the South Carolina Department of Natural Resources has 

compiled a comprehensive natural resources GIS database which is amenable to the 

analysis we conduct. 

II. Econometric Model of Land Use Change 

Stavins and Jaffe (1990) solve a landowner�s profit-maximizing dynamic 

optimization problem to determine a land-use transition rule.  According to this rule, the 

landowner will convert to the use that yields the highest expected present discounted 

value of an infinite stream of net returns minus conversion costs. Following Lubowski 

(2002), we assume that landowners base their expectations of future land-use returns on 

current and historical land-use returns.  In particular, we assume that landowners expect 

future land-use net returns to equal the average of the net returns over the five most 

recent years.  We also assume that landowners ignore option values.  With static 

expectations and no option values, the landowner�s decision rule is to choose the land use 
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with the highest expected one-period net return at time t.  In formal terms, a landowner 

will convert from use j to use k in time t if the following holds: 

jtjktkt RrCR >−  (1) 

for all alternatives k.  In this framework, R represents returns, r represents the discount 

rate, and C represents conversion costs.  The landowner�s profit function can be 

expressed as an indirect random utility function by writing the observed and unobserved 

portions of utility. Specifying the one-period net utility to the landowner on parcel i from 

switching from use j to k in time t: 

 ijktijktjkttijktiktijkt xrCRU εβ +=−=  (2) 

where xijkt is a vector of observed variables, βjkt are parameters that are allowed to vary 

over time and over transition, and ε is a random error term.  We can therefore define the 

probability that the owner of parcel i in use j will convert to use k during time t as: 

 )''( ijktijltijlttjkijkttjk xxpr εεββ −≥−  (3) 

for uses j=1,�.,J.  If we assume that the error terms are IID Type I extreme value, 

equation (4) yields a conditional logit model3 with the following probability that parcel i 

changes from use j to use k between t and t+1: 
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Pijkt embodies the first-order Markov property, because the probability of the parcel 

changing use depends only on decision variables in time t.  In addition, the specification 

of choice probabilities as (4) implies an assumption of independence of irrelevant 

alternatives (IIA).  The IIA property is a well-known assumption of logit models and 
                                                
3 Other assumptions regarding the error term produce alternative probabilistic models. 
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implies that the probabilities of any two choices must be independent of the other 

alternatives in the choice set.  We provide test results below that fail to reject IIA as a 

null hypothesis.  The elements of x include attributes of the different land use choices as 

well as attributes of the individual land parcels. 

 In addition to net returns, the literature has shown land-use conversion to be a 

function of soil quality (Plantinga 1996; Nelson et al. 2001), distance to urban areas 

(Kline and Alig 2001), and spatial interactions between plots (Irwin and Bockstael 2002).  

However, the discrete choice econometrics literature has not advanced enough to control 

for spatial autocorrelation, and thus an unbiased estimate of the spatial interaction effect 

is still not possible (Irwin and Bockstael 2002).  With these considerations, we choose to 

specify land-use choice as a function of net returns to alternative land uses, soil quality, 

and urban influence.  The following specification is used for landowner utility of 

switching parcel i from use j to use k, in county c, during time period t: 

   ijktkc
q
it

q
jktkcjkti

u
jktjkticjkt RLCCRUIU εββαα ++++= 00   (5) 

where 0
jktα  is an alternative-specific constant, jktα and jktβ are parameters, Rkc denotes 

county-level returns to use k, UIi is a dummy variable indicating whether the parcel is in 

a rural (1) or urban (0) area, and LCCq
it is a dummy variable indicating whether plot i is 

in soil quality q at time t.  Since net returns to land use are measured at the county level 

(see below), we interact these returns with plot-specific measures of soil quality to scale 

the returns up or down depending on soil quality. The parameter u
jktα  is assumed to be 

zero for k = forest and k=agriculture, while q
jktβ  is assumed to be zero for k = urban4. For 

                                                
4 A likelihood ratio test fails to reject the null that q

jktβ = 0 where k = urban at the 5% level.  
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identification, we normalize the alternative specific constants to be zero for the starting 

use.  Costs-of-conversion from (1) will be captured in the alternative-specific constants.  

Given the above normalization, we expect the alternative specific constants to be 

negative relative to starting use. This would signify that conversion costs are positive.  

The u
jktα  coefficient is expected to be negative, which would scale down the probability 

of a plot converting to an urban use in a rural area versus an urban area.  The jktβ �s are 

expected to be positive, indicating that higher returns to a use increases the likelihood 

that it will be chosen as the ending use. The jkt
qβ  �s are expected to be negative for the 

agriculture ending use (k = agriculture), indicating a lower probability of land converting 

to agriculture on lower quality land. The jkt
qβ  �s are expected to be positive for the forest 

ending use (k = forest), indicating a higher probability of land converting to or remaining 

in forest on low quality land. 

Land use data for this paper is derived from the National Resources Inventory 

(NRI), provided by the U.S. Department of Agriculture.  To estimate parameters specific 

to the southeast region, we utilize data for the states of North and South Carolina. The 

NRI is a panel survey of land use, land cover, and soil characteristics that is conducted at 

five year intervals from 1982 to 1997 on a sample of non-federal lands across the U.S.  

Thus, there are 3 parcel-level land-use transitions observed here, each for a 5 year 

interval.  The analysis in this paper is focused on lands that can be classified either as 

agriculture, forest, or urban uses.  The remainder of the land base is classified 

predominantly as either water or federal land.  Management of these lands is assumed not 

to be governed by profit maximization and they are excluded from the analysis.  Land use 

returns are taken from Ruben Lubowski�s (2002) national-level dataset. Annual county-
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level net returns are calculated by averaging the previous five years net return for each 

NRI starting period for the three land uses considered here (agriculture, forestry, and 

urban).  The agriculture category is comprised of those lands classified as either crop or 

pasture land in order to match the econometric model to the available GIS data. 

The NRI dataset includes information on the soil quality of each NRI plot.  We 

utilize the land capability class (LCC) rating of each plot to scale the county-level returns 

for agriculture and forestry.  LCC is a composite index representing many factors (i.e. 

soil type, slope, etc.) important to the suitability of the land for agriculture.  The LCC 

index ranges from 1 to 8.  To ensure sufficient observations in each group, LCC is placed 

into different groupings.  For lands starting in agriculture, LCC is split into three different 

groupings: LCC 1 or 2, LCC 3 or 4, and LCC 5, 6, 7 or 8, with dummy variables 

indicating whether the parcel has a particular LCC ranking.  For lands starting in forest, 

LCC is split into four different groupings: LCC 1 or 2, LCC 3 or 4, LCC 5 or 6, and LCC 

7 or 8.  We also utilize information on the urban status of the plot as defined by USDA�s 

Economic Research Service (ERS).  Each NRI plot is classified as urban-influenced or 

not urban-influenced based on an index of urban proximity derived from Census-tract 

population data from 19905.  The derived index is similar to a gravity index, and provides 

a measure of accessibility to population concentrations.  The linking of this index to NRI 

plots is particularly useful because the only other location information disclosed on the 

NRI plots is the county in which they reside. 

 The NRI provides a panel data set with three 5 year transition periods observed 

(1982-87; 1987-92; 1992-97).  However, panel data estimation is infeasible with a logit 

                                                
5 We thank Vince Breneman at ERS for linking urban influence to the NRI plots and Shawn Buckholtz at 
ERS for providing the corresponding GIS layer on urban influence. 
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model unless we are willing to assume that unobserved components of utility are 

uncorrelated over time.  There are many unobserved elements of utility (e.g. distance to 

major roads) which will clearly be correlated over time for particular parcels.  Thus, to 

maximize variation in the dataset and to ensure efficient estimation, we utilize a pooling 

strategy which provides some of the benefits of panel data estimation without adding the 

above restrictive assumption6.  Lastly, we weight the observations with the NRI�s acreage 

weights in order to ensure that the sample is representative of the population7.  

Results 

The econometric model is estimated using maximum likelihood procedures for 

the pooled sample.  Results are presented in table 1. The parameters are estimated 

separately for each of the two starting land uses (agriculture and forest).  Lands beginning 

in an urban use are assumed not to leave urban.  There are 9,692 observations in the 

sample with agriculture as the starting land use, and 20,721 observations for the sample 

with forest as the starting land use.  Likelihood ratio tests reject the hypothesis that all of 

the coefficients are simultaneously equal to zero (0.01 level) for each of the equations.  In 

addition, pseudo R2 is approximately 0.8 for land uses starting in agriculture and 0.9 for 

land uses starting in forest, indicating that the specified model increases the log-

likelihood function above the value taken at zero parameters.  Thus, the estimation results 

suggest a good model fit for both starting uses.  Hausman tests for independence of 

                                                
6 For land parcels that remain in a given land use for all three periods, we randomly select one-third of the 
parcels from each time period.  For parcels that are in a given land use at the start of only two periods, we 
randomly select one-half of the parcels from each period.  For parcels that are only in a particular use at the 
start of one of the periods, we include all of the observations.  The observations are then weighted 3,2, and 
1, respectively, to those parcels that were sampled at 1/3, ½, and 1/1 intensity. 
 
7 Each NRI point is given an acreage expansion factor between 1 and 192, with lower numbers indicating a 
lower acreage weighting and a more intensively sampled region. To avoid shrinking standard errors due to 
this weighting, the weights are scaled so that they sum to the total number of actual observations.  
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irrelevant alternatives (IIA) were run for both starting uses with results failing to reject a 

null hypothesis of IIA at the 0.05 level for each of the two starting uses8.  

The alternative specific constants are negative and significantly different from 

zero at the 1% level, suggesting that conversion costs are an important component in a 

landowner�s land use decision. Likewise, coefficients on the alternative-specific returns 

are all positive and significantly different from zero at the 1% level.  This suggests that 

higher net returns to particular land uses increase the probability that these land uses will 

be chosen.  In terms of the coefficients interacting net returns with soil quality, all are 

correctly signed and 5 of the 9 coefficients are significantly different from zero at the 

10% level or higher, while 4 of the 5 significant coefficients are significantly different 

from zero at the 5% level or higher.  This suggests that soil quality is an important 

component influencing land use transitions.  For parcels starting in agriculture, 

coefficients indicate that parcels with lower soil quality will be less likely to stay in 

agriculture and more likely to convert to forest or urban uses.  For parcels starting in 

forest, coefficients indicate that parcels with lower soil quality will be more likely to stay 

in forest and less likely to convert to forest or urban uses.  Lastly, the coefficient on the 

urban status of the plot is negative and significantly different from zero at the 1% level, 

indicating that parcels in rural areas are less likely to convert to urban uses than parcels in 

urban areas, ceteris paribus. 

                                                
8 Since the Hausman test is of low power, we also evaluate the conditional logit model against the 
Heteroscedastic Extreme Value (HEV) model, which doesn�t impose IIA.  The results are mixed.  For the 
forest starting use, a likelihood ratio test fails to reject the conditional logit model in favor of the HEV 
model at any reasonable confidence level.  For the agriculture starting use, a likelihood ratio test rejects the 
conditional logit model in favor of the HEV model.  However, the scale parameter coefficients in the HEV 
model are not significantly different from each other at the 5% level, which is not evidence against IIA.  
Thus, comparison of the HEV and conditional logit models offers no firm rejection of IIA as a null 
hypothesis, confirming the Hausman test results. 



 12

Of primary importance for the landscape simulations in this paper are the spatial 

properties of the transition probabilities.  The probabilities are differentiated spatially by 

starting land use, county-level returns to alternative land uses, parcel-specific soil quality, 

and urban status (as defined by USDA�s urban influence index) of the parcel.  For lands 

starting in agriculture, the probability of leaving agriculture for forest or urban uses 

increases as soil quality decreases.  In addition, the probability of agricultural parcels 

converting to urban uses is significantly higher in urban areas than in rural areas.  In 

contrast, for lands starting in forest, the probability of leaving forest for agriculture or 

urban uses decreases as soil quality decreases.  Similar to lands starting in agriculture, the 

probability of forest parcels converting to urban uses is significantly higher in urban areas 

than in rural areas.      

III. Landscape Simulation Methodology 

GIS Data Description 

The GIS data for this project is derived from the South Carolina Department of 

Natural Resources� (SCDNR) GIS data clearinghouse.  This is an integrated statewide 

natural resources database designed to facilitate natural resource decision making in 

South Carolina.  We utilize GIS layers on land use, soil quality, public lands, urban 

influence, and political boundaries.  The data are organized by quadrangles (quads), as 

defined by the U.S. Geological Service (USGS), resulting in 566 maps within the state.  

Each quad covers approximately 40,000 acres of land.  In this study, we focus on the 295 

maps comprising the coastal plain in the eastern half of the state. The land use data were 

developed by SCDNR in conjunction with the National Wetlands Inventory (NWI), 

conducted by the U.S. Fish & Wildlife Service.  The land use data is delineated from 

1:40,000 scale infrared photography (from 1989) and upland land use is categorized by 
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the Anderson Level II system as designed by the U.S. Geological Service (USGS).  The 

land use data is in vector format at 10 acre minimum resolution. 

The soil quality layer is derived from existing county surveys available from the 

Natural Resources Conservation Service (NRCS).  The data was digitized by SCDNR 

and linked to STATSGO tables of soil attributes, which characterize various soil quality 

measures.  To match the soils layer with our econometric model we further linked these 

tables to USDA�s SSURGO soils tables to obtain land capability class (LCC) information 

on each parcel.  We also utilized GIS layers on public lands status as available from the 

SCDNR database.  Each parcel was categorized as either private or publicly owned.  

Publicly owned lands include national forests, national wildlife refuges, state parks, state 

forests, and state-owned wildlife management areas.  Lastly, we utilized a GIS layer of 

urban influence status from ERS to match each parcel with its urban status (defined with 

2000 Census data).  Thus, each parcel in the landscape is identified by land use category 

(agriculture, forest, urban, or water/missing), soil quality (LCC), public land status, and 

urban influenced status.  The resulting GIS layer allows us to match the econometric land 

use model to the landscape for forecasting land use change.  After overlaying all of the 

above layers, we end up with an average of approximately 7,500 parcels per quad, with 

the number being lower for those quads covering the immediate coastline. These quads 

typically have a significant portion of their area as water, which is counted as one �parcel� 

in the GIS map. This gives us an average land parcel size of just over 5 acres.   

Simulation Strategy 

The econometric land use model provides transition probabilities specific to 

starting land use, soil quality, county-level net returns to various land uses, and the urban 
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status of the plot as defined by USDA�s urban influence index.  Thus, each county will 

have as many as 42 separate transition probabilities, depending on the initial 

configuration of the land uses, soil quality, and spatial extent of the urban influence 

index.  Thus, we assume that a common set of probabilities apply to all parcels of a given 

quality within a county.  For example, two privately-owned agricultural parcels in a 

county that have identical soil quality and urban status will have the same probabilities of 

either remaining in or converting out of agriculture.  We are thus assuming that key 

economic factors that determine transition probabilities (e.g., commodity prices) exhibit 

little variation within a county.    

For the purpose of the simulations, one can view the estimated transition 

probabilities as a set of rules that govern land-use changes within a county.  For example, 

if the value of the agriculture-to-forest transition probability is 0.10 for a particular 

quality parcel, an agricultural landowner of such quality land should convert their parcel 

to forestland about 10% of the time, if the same choice situation were repeated numerous 

times.  Thus, the role of the simulations is to use random number generators to repeat the 

choice situation many times for each parcel in the landscape.  Only privately-owned 

agriculture and forest parcels are assumed to transition, as urban land is expected to stay 

in urban status and water and public lands are not assumed to transition.  
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Fragmentation Indices and Number of Simulations 

 One consequence in our use of Monte Carlo simulations is that we cannot 

generate one particular landscape outcome.  Instead we generate many possible landscape 

outcomes which all represent a different landscape which satisfies the underlying 

transition model.  In order to analyze such a large set of spatial outcomes we calculate 

fragmentation indices for each simulation run.  Of course, this brings up the issue of 

deciding which of many indices to use.  To answer this question, we follow Ritters et al. 

(1995) and perform a principal components analysis (PCA) to reduce the number of 

calculated fragmentation indices.  This is a method used extensively in the landscape 

ecology literature. 

 The PCA was run with the initial landscape of 295 quadrangles.  A total of 32 

fragmentation indices were calculated using the software Fragstats for each of the 295 

quadrangles in rasterized form.  Metrics were chosen to represent the following 

categories of landscape pattern: area, edge, shape, core area, isolation/proximity, contrast, 

contagion, interspersion, and connectivity.  Results of the PCA indicate that 

approximately 84% of the variation in the larger set of indices can be captured with the 

use of only five indices.  The first index is the percentage of the landscape in core forest 

(CORE).  This index is calculated by totaling all forestland that is at least 200m from the 

nearest non-forest edge and dividing by the total area of the quad.  The second index is 

the mean of the shape index (SHAPE), which is calculated for each forest patch in each 

quad.  This index equals one when the patch is maximally compact and increases as patch 

shape becomes more irregular.  The third index is the clumpiness index (CLUMPY), a 

measure of contagion, or the extent to which parcels of similar use are aggregated.  This 



 16

index ranges between -1 and 1 and equals zero when the focal patch type is distributed 

randomly.  The fourth index is the splitting index (SPLIT), an index of habitat area and 

subdivision.  This index equals one when the quad consists of a single patch, and 

increases as the focal patch type is reduced in area and/or becomes subdivided.  The last 

index is average patch size (PATCH).  This is a commonly used fragmentation statistic 

that averages the area (in hectares) of all patches in the quad.  Detailed descriptions of 

these indices can be found in McGarigal et al. (2002).   

By repeatedly simulating land-use transitions, we generate a distribution of 

potential fragmentation outcomes.  One important question in Monte Carlo simulation is 

how many simulations is enough?  The computational challenges inherent in this analysis 

preclude us from implementing a convergence rule which allows us to stop simulating 

once a particular criterion is met.  Thus, we utilize a different strategy and select 5 

representative quads to analyze the number of simulations required for the distributions to 

converge9.    

 In considering the question of when to stop simulating data, Ross (1997) suggests 

an approach that considers the length of the confidence interval of the parameter of 

interest Θ(F) from the distribution F10.  For the purposes of this study, we wish to 

characterize the first three moments of the distribution of fragmentation outcomes.  

Confidence interval lengths for the first three moments decrease at a decreasing rate with 

the number of simulations. Each interval length changes very little once 500 simulations 

                                                
9 Representative quads were chosen along two axes: the expected change in a quad�s forest habitat as 
defined by the econometric model, and the amount of initial fragmentation on the quad. 
10 Additional simulations are run until the approximate 100(1-α) percent confidence interval estimate of Θ 
is less than some chosen length l.  The researcher�s job is to choose the parameter of interest Θ(F), as well 
as α and l accordingly. 
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have been run11.  To further investigate whether 500 simulations adequately characterize 

the distributions, we run an additional test.  In particular, we hypothesize that if 500 

simulations is enough, then the estimates of the first three moments should not be 

statistically different between two separate samples of 500 simulations.  Results confirm 

that the estimates of the first three moments are not statistically different from each other 

at the 1% level across two simulated samples.  We interpret these results as evidence that 

500 simulations is an adequate number of simulations to characterize the distribution of 

fragmentation outcomes across the representative quads.   

IV. Landscape Simulation Results 

 Baseline results (with constant relative net returns to land) were simulated for a 

30 year time horizon for all 295 individual quads across the landscape.  Computing time 

is an issue with this analysis as the average quad has approximately 7500 parcels of land 

with which to apply the simulations. It takes roughly 295 hours (or 1 hour per quad) to 

simulate 500 landscape outcomes for each quad and do the respective fragmentation 

calculations.  This equates to roughly 12.3 days of computing time.  The results consist of 

distributions of the various fragmentation indices for each quad, rather than one single 

landscape outcome. 

 In order to understand the effects of the underlying spatial heterogeneity of each 

landscape on the baseline simulations, we select three quads with almost identical first 

moments of the core forest index and examine the differences in their distributions.  

Figure 2 presents the empirical probability distributions from each of these quads for the 

core forest index.  Each of the three quads has a mean of the core forest index at 

approximately 39% of the landscape.  However, the second and third moments of the 
                                                
11 We use bootstrapping to estimate standard errors for the estimators of the second and third moments. 
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distributions are quite different from one another.  In particular, the Gadsden quad has a 

much smaller variance and is much more symmetric than the distributions for the other 

two quads.  The distribution of the core forest index for the Grays quad has a much 

higher variance and is much more skewed than the other distributions. The distribution 

from the Snow Island quad falls in between the other two in terms of variance and 

skewness.  Of particular interest is that even though all three quads are predicted to have 

similar means in the core forest index (~39%), the probability of being well away from 

the mean is significantly different across quads.  In particular, the empirical distribution 

functions indicate that the probability of having greater than 43% of the quad in core 

forest is 0.2 for the Grays quad and 0.03 or less for the other two.  Likewise, the 

probability of having less than 35% of the quad in core forest is 0.12 for the Snow Island 

quad, 0.08 for the Grays quad, and 0 for the Gadsden quad. 

 All three quads are heavily forested initially, with the Grays and Gadsden quads 

being roughly 80% forested and the Snow Island quad being 90% forested.  However, 

28% of the Gadsden quad is in public ownership, and thus not expected to transition. In 

contrast, the Grays and Snow Island quads are almost entirely in private ownership and 

thus subject to land use conversion, a fact which may partially explain the increased 

variance in the distributions of these quads. Interestingly, the Gadsden quad is the only 

one of the three with any urban influence, and yet this is the quad with the tightest 

distribution of core forest around the mean. The important point to consider is that three 

landscapes with similar aggregate levels in land use and similar predictions of the mean 

of fragmentation outcomes can still have very different distributions of those same 
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outcomes.  This highlights the role that the spatial heterogeneity of the initial landscape 

can have on the probability of particular fragmentation outcomes. 

In order to understand expected changes in fragmentation across the entire coastal 

plain, we also focus on the changes expected in each index relative to the initial 

landscape, where changes will be evaluated at the means of the forecasted distributions.  

The most basic result to look at is the change in total forest cover.  The statistic used is 

the percentage of each quad in forest, and 82 of the 295 quads (28%) are forecast to 

increase their forest cover while 213 of the 295 quads (72%) are forecast to have 

decreases in forest cover in the baseline.  The range is from a maximum loss in forest of 

over 19 percentage points to a gain of just over 10 percentage points.  Most of the 

increases in forest cover come in the western part of the coastal plain, which is the more 

agricultural region.  The largest decreases in forest come in the more urban-rural fringe 

areas, particularly those near the coast around Charleston.  

For fragmentation, we first focus on changes in the percentage of each quad in 

core forest.  Only 2 of the 295 quads (less than 1%) are forecast to have any increases in 

core forest, with the remaining 293 quads (over 99%) predicted to have decreases in core 

forest (Figure 3).  The range in this statistic is from a maximum loss in core forest of 

almost 43 percentage points to a gain of 0.25 percentage points.  In general, areas with 

higher losses in total forest cover are also the areas that are forecast to have higher losses 

in core forest; the difference is in the magnitude.  The loss in the percentage of the 

landscape in core forest greatly exceeds the loss in the percentage in forest in many of the 

quads.  This is suggestive of significant decreases in core forest beyond decreases in total 

forestland. 
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The second fragmentation statistic analyzed is the change in average forest patch 

size.  This statistic yields a more complex picture of future fragmentation patterns across 

the region.  Of the 295 quads, 259 (88%) are predicted to have losses in their average 

forest patch sizes, while 36 (12%) are predicted to have gains in their average forest patch 

sizes (Figure 3).  The results range from a maximum decline in average patch size of 85% 

to a maximum increase of 48% over the initial average patch size.  Most of the gains in 

average patch size come in the agricultural region of the coastal plain.  Interestingly, the 

gains in average patch size come in areas that are either predicted to lose core forest or to 

have virtually no change in core forest.  This suggests that it is mostly edge forest that is 

forecast to be added in this part of the coastal plain rather than core forest. 

The magnitudes of the other indices are more difficult to interpret, and so we only 

focus on whether predicted changes in these indices yield a more or less fragmented 

landscape.  Results from changes in the splitting index indicate that 209 of the 295 quads 

(71%) are getting more fragmented (increases in the index) and 86 (29%) quads are 

becoming less fragmented.  Predicted changes in the clumpiness index indicate that 290 

(98%) are getting more fragmented (decreases in the index) and 5 (2%) are getting less 

fragmented.  Lastly, predicted changes in the mean of the shape index indicate that only 

116 (39%) quads are predicted to get more fragmented (increase in the index) while 179 

(61%) are predicted to get less fragmented12.   

V. Conclusions and Next Steps 

 This paper has integrated a behavioral econometric model of land use conversion 

with spatially-explicit landscape simulations to forecast changes in forest fragmentation 

                                                
12 A GIS map of these fragmentation indices was not reported here but is available from the authors upon 
request. 
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across the coastal plain of South Carolina.  A parcel-level econometric model was 

specified to predict changes between forest, agricultural, and urban uses.  Results 

highlight that such a model is necessary for analyzing fragmentation because of the many 

channels with which land use change operates.  In particular, while forest lands are 

predictably expected to become more fragmented in the urban-rural fringe, afforestation 

in some rural agricultural areas actually increases the average forest patch size and 

decreases fragmentation in those areas.  Thus, a complete understanding of fragmentation 

across a large landscape requires the modeling of both urban development and transitions 

between agriculture and forestry. 

Another important methodological issue is the application of econometrically 

derived transition probabilities to GIS maps.  A Monte Carlo simulation methodology is 

introduced in this paper which extends the empirical land use literature by treating the 

econometric results as probabilistic transition rules rather than deterministic rules in the 

forecasting of the spatial structure of landscape change.  The deterministic approach 

typically assigns parcels to the use with the highest predicted probability, resulting in one 

forecasted landscape rather than a distribution of possible landscapes, such as we present 

here.  However, results in this paper highlight that the distribution of potential spatial 

outcomes can vary widely across landscapes, even when the first moments of the 

distributions are similar.  A potentially interesting future application would be to compare 

the results of the two methodologies to determine where landscape outcomes predicted 

with deterministic rules would lie along the Monte Carlo distributions presented here.  It 

is important to note that they would not necessarily lie at the mean of the distributions. 
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Baseline results presented here indicate that forest fragmentation is predicted to 

increase across much of the coastal plain of South Carolina, particularly in those areas 

most affected by urban development. But, some of the more rural, agricultural areas may 

actually have reductions in some indicators of fragmentation.  However, reductions in 

fragmentation appear to be based on increases in forest patch size due to the addition of 

edge forest rather than the addition of core forest in these rural landscapes.  Results here 

highlight the fact that forest fragmentation is affected by both urban development of 

forestland as well as transitions between the forest and agricultural sectors.  The net 

effect of land use change on forest fragmentation is a result of the spatial location of 

those parcels leaving forest and the spatial location of those parcels entering forest.  

Regions with an active margin between agriculture and forestry may be able to mitigate 

somewhat the effects of urban development on forest fragmentation. 

The results presented in this paper are preliminary and do not yet consider policy 

simulations.  Our next steps include simulating various land use policies which alter the 

net returns of forestry relative to agriculture and urban uses.  In addition, we plan to 

utilize the predicted fragmentation statistics in an ecological model to translate changes in 

forest habitat and fragmentation to changes in bird populations (e.g. Matthews et al. 

2002).  Finally, we plan to analyze the economic efficiency of various land use policies 

aimed at altering the spatial configuration of land.  
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Table 1 � Econometric results for land use transition model 

 Starting 
Use 

 

Parameter Agriculture Forest 
Ag Intercept  -4.7767**
  -(40.71)
Ag Returns 0.0033** 0.0056**
 (3.61) (3.68)
Ag Returns *LCC 3 or 4 -0.0021 -0.0014
 -(1.69) -(0.78)
Ag Returns *LCC 5,6,7, or 8 -0.0064** 0.0024
 -(3.93) (1.12)
Forest Intercept -4.0478**  
 -(34.73)  
Forest Returns 0.0535** 0.0210**
 (6.02) (2.53)
Forest Returns * LCC 3 or 4 0.0024 0.0057
 (0.36) (0.95)
Forest Returns * LCC 5 or 6  0.0313**
  (3.72)
Forest Returns * LCC 7 or 8  (0.06)**
  (5.97)
Forest Returns * LCC 5,6,7 or 8 0.0553**  
 (5.18)  
Urban Intercept -3.6846** -3.2724**
 -(33.11) -(28.03)
Urban Influence (1 = rural, 0 = 
urban) 

-1.3773** -1.4068**

 -(12.53) -(17.93)
Urban Returns 0.0003** 0.0002**
 (7.24) (6.79)
Pseudo R2 0.7942 0.8928
N 9692 20721
** Significant at the 1% level; * Significant at the 5% level  
t statistics in parentheses 
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Figure 1 � Coastal Plain of South Carolina by USGS quadrangle (quads) 

      Percentage of Quads in Forest   Percentage of Quads in Core* Forest 

 

* Core forest is defined as forest that is at least 200m from the nearest non-forest edge
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Figure 2 � Distribution of Core Forest Index for Selected Quads 
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Figure 3 � Change in fragmentation indices (Baseline 30-yr horizon) 
 
 Percent of Quads in Core Forest  Average Forest Patch Size (%) 

 

 
 


